機器人技術概述
機器人(Robot)這個詞最早出現在上世紀20年代美國科幻小說家阿西莫夫的科幻小說中。自從1959年美國英格伯格和德沃爾制造出世界上第1臺工業機器人UNIMATE以后,機器人才從文學幻想變成了現實,機器人的歷史才由此開始。在幾十年的發展過程中,機器人技術的研究長足的進步。
從機器人的用途來分,可以分為兩大類:軍用機器人和民用機器人。
軍用機器人主要用于軍事上代替或輔助軍隊進行作戰、偵察、探險等工作。根據不同的作戰空間可分為地面軍用機器人、空中軍用機器人(即無人飛行機)、水下軍用機器人和空間軍用機器人等。軍用機器人的控制方式一般有自主操控式、半自主操控式、遙控式等多種方式,這里不作詳述。
在民用機器人中,各種生產制造領域中的工業機器人在數量上占絕對多數,成為機器人家族中的主力軍;其它各種種類的機器人也開始在不同的領域得到研究開發和應用。總體看來,若按用途分,民用機器人可以分為以下幾個主要類別:
工業機器人
這是機器人中數量和種類最多的一種機器人,廣泛用于工業領域的各行各業。也是形成機器人產業的一種機器人。工業機器人一般由機械本體、控制器、伺服驅動系統和檢測傳感裝置等構成,是一種仿人操作、自動控制、可重復編程、能在三維空間完成各種作業的機電一體化自動化生產設備。特別適合于多品種、變批量的柔性生產。它對穩定、提高產品質量,提高生產效率,改善勞動條件和產品的快速更新換代起著十分重要的作用。
工業機器人并不是在簡單意義上代替人的勞動,它既有人對環境狀態的快速反應和分析判斷能力,又具有機器可長時間持續工作、精確度高、抗惡劣環境的能力,從某種意義上說它也是機器的進化過程產物。機器人技術是綜合了計算機、控制論、機構學、信息和傳感技術、人工智能、仿生學等多學科而形成的高新技術,是當代研究十分活躍,應用日益廣泛的領域。機器人應用情況,是一個國家工業自動化水平的重要標志。
工業機器人的應用領域非常廣泛,主要用于生產制造過程中的焊接、切割、裝配、噴漆、搬運、包裝、產品檢驗等等,目前在汽車制造業生產線上服役的工業機器人占總體數量的一半以上。
2、 焊接機器人應用現狀
據不完全統計,全世界在役的工業機器人中大約有將近一半的工業機器人用于各種形式的焊接加工領域,焊接機器人應用中最普遍的主要有兩種方式,即點焊和電弧焊。圖4所示是這兩種焊接機器人在工業機器人中所占的大致比例。我們所說的焊接機器人其實就是在焊接生產領域代替焊工從事焊接任務的工業機器人。這些焊接機器人中有的是為某種焊接方式專門設計的,而大多數的焊接機器人其實就是通用的工業機器人裝上某種焊接工具而構成的。在多任務環境中,一臺機器人甚至可以完成包括焊接在內的抓物、搬運、安裝、焊接、卸料等多種任務,機器人可以根據程序要求和任務性質,自動更換機器人手腕上的工具,完成相應的任務。因此,從某種意義上來說,工業機器人的發展歷史就是焊接機器人的發展歷史。
眾所周知,焊接加工一方面要求焊工要有熟練的操作技能、豐富的實踐經驗、穩定的焊接水平;另一方面,焊接又是一種勞動條件差、煙塵多、熱輻射大、危險性高的工作。工業機器人的出現使人們自然而然首先想到用它代替人的手工焊接,減輕焊工的勞動強度,同時也可以保證焊接質量和提高焊接效率。
從機器人誕生到本世紀80年代初,機器人技術經歷了一個長期緩慢的發展過程。到了90年代,隨著計算機技術、微電子技術、網絡技術等的快速發展,機器人技術也得到了飛速發展。工業機器人的制造水平、控制速度和控制精度、可靠性等不斷提高,而機器人的制造成本和價格卻不斷下降。
在西方國家,由于勞動力成本的提高為企業帶來了不小的壓力,而機器人價格指數的降低又恰巧為其進一步推廣應用帶來了契機。減少員工與增加機器人的設備投資,在兩者費用達到某一平衡點的時候,采用機器人的利顯然要比采用人工所帶來的利大,它一方面可大大提高生產設備的自動化水平,從而提高勞動生產率,同時又可提升企業的產品質量,提高企業的整體競爭力。雖然機器人一次性投資比較大,但它的日常維護和消耗相對于它的產出遠比完成同樣任務所消耗的人工費用小。因此,從長遠看,產品的生產成本還會大大降低。而機器人價格的降低使一些中小企業投資購買機器人變得輕而易舉。因此,工業機器人的應用在各行各業得到飛速發展。根據UNECE的統計,2001年全世界有75萬臺工業機器人用于工業制造領域,其中38.9萬在日本、19.8萬在歐盟、9萬在北美,7.3萬在其余國家。至2004年底全世界在役的工業機器人至少有約100萬。
工業機器人的結構形式很多,常用的有直角坐標式、柱面坐標式、球面坐標式、多關節坐標式、伸縮式、爬行式等等,根據不同的用途還在不斷發展之中。焊接機器人根據不同的應用場合可采取不同的結構形式,但目前用得最多的是模仿人的手臂功能的多關節式的機器人,這是因為多關節式機器人的手臂靈活性最大,可以使焊槍的空間位置和姿態調至任意狀態,以滿足焊接需要。理論上講,機器人的關節愈多,自由度也愈多,關節冗余度愈大,靈活性愈好;但同時也給機器人逆運動學的坐標變換和各關節位置的控制帶來復雜性。因為焊接過程中往往需要把以空間直角坐標表示的工件上的焊縫位置轉換為焊槍端部的空間位置和姿態,再通過機器人逆運動學計算轉換為對機器人每個關節角度位置的控制,而這一變換過程的解往往不是唯一的,冗余度愈大,解愈多。如何選取最合適的解對機器人焊接過程中運動的平穩性很重要。不同的機器人控制系統對這一問題的處理方式不盡相同。
一般來講,具有6個關節的機器人基本上能滿足焊槍的位置和空間姿態的控制要求,其中3個自由度(XYZ)用于控制焊槍端部的空間位置,另外3個自由度(ABC)用于控制焊槍的空間姿態。因此,目前的焊接機器人多數為6關節式的。
對于有些焊接場合,工件由于過大或空間幾何形狀過于復雜,使焊接機器人的焊槍無法到達指定的焊縫位置或焊槍姿態,這時必須通過增加1~3個外部軸的辦法增加機器人的自由度。通常有兩種做法:一是把機器人裝于可以移動的軌道小車或龍門架上,擴大機器人本身的作業空間;二是讓工件移動或轉動,使工件上的焊接部位進入機器人的作業空間。也有的同時采用上述兩種辦法,讓工件的焊接部位和機器人都處于最佳焊接位置。
焊接機器人的編程方法目前還是以在線示教方式(Teach-in)為主,但編程器的界面比過去有了不少改進,尤其是液晶圖形顯示屏的采用使新的焊接機器人的編程界面更趨友好、操作更加易。然而機器人編程時焊縫軌跡上的關鍵點坐標位置仍必須通過示教方式獲取,然后存入程序的運動指令中。這對于一些復雜形狀的焊縫軌跡來說,必須花費大量的時間示教,從而降低了機器人的使用效率,也增加了編程人員的勞動強度。目前解決的方法有2種:
一是示教編程時只是粗略獲取幾個焊縫軌跡上的幾個關鍵點,然后通過焊接機器人的視覺傳感器(通常是電弧傳感器或激光視覺傳感器)自動跟蹤實際的焊縫軌跡。這種方式雖然仍離不開示教編程,但在一定程度上可以減輕示教編程的強度,提高編程效率。但由于電弧焊本身的特點,機器人的視覺傳感器并不是對所有焊縫形式都適用。
二是采取完全離線編程的辦法,使機器人焊接程序的編制、焊縫軌跡坐標位置的獲取、以及程序的調試均在一臺計算機上獨立完成,不需要機器人本身的參與。
我國的工業機器人從80年代“七五”科技攻關開始起步,目前已基本掌握了機器人操作機的設計制造技術、控制系統硬件和軟件設計技術、運動學和軌跡規劃技術,生產了部分機器人關鍵元器件,開發出噴漆、弧焊、點焊、裝配、搬運等機器人;弧焊機器人已應用在汽車制造廠的焊裝線上。但總的來看,我國的工業機器人技術及其工程應用的水平和國外比還有一定的距離,如:可靠性低于國外產品;機器人應用工程起步較晚,應用領域窄,生產線系統技術與國外比有差距;應用規模小,沒有形成機器人產業。
當前我國的機器人生產都是應用戶的要求,單戶單次重新設計,品種規格多、批量小、零部件通用化程度低、供貨周期長、成本也不低,而且質量、可靠性不穩定。因此迫切需要解決產業化前期的關鍵技術,對產品進行全面規劃,搞好系列化、通用化、模塊化設計,積極推進產業化進程。
3、 焊接機器人發展趨勢
目前國際機器人界都在加大科研力度,進行機器人共性技術的研究。從機器人技術發展趨勢看,焊接機器人和其它工業機器人一樣,不斷向智能化和多樣化方向發展。具體而言,表現在如下幾個方面:
1).機器人操作機結構:
通過有限元分析、模態分析及仿真設計等現代設計方法的運用,實現機器人操作機構的優化設計。
探索新的高強度輕質材料,進一步提高負載/自重比。例如,以德國KUKA公司為代表的機器人公司,已將機器人并聯平行四邊形結構改為開鏈結構,拓展了機器人的工作范圍,加之輕質鋁合金材料的應用,大大提高了機器人的性能。此外采用先進的RV減速器及交流伺服電機,使機器人操作機幾乎成為免維護系統。
機構向著模塊化、可重構方向發展。例如,關節模塊中的伺服電機、減速機、檢測系統三位一體化;由關節模塊、連桿模塊用重組方式構造機器人整機;國外已有模塊化裝配機器人產品問市。
機器人的結構更加靈巧,控制系統愈來愈小,二者正朝著一體化方向發展。
采用并聯機構,利用機器人技術,實現高精度測量及加工,這是機器人技術向數控技術的拓展,為將來實現機器人和數控技術一體化奠定了基礎。意大利COMAU公司,日本FANUC等公司已開發出了此類產品。
2).機器人控制系統:
重點研究開放式,模塊化控制系統。向基于PC機的開放型控
制器方向發展,便于標準化、網絡化;器件集成度提高,控制柜日見小巧,且采用模塊化結構;大大提高了系統的可靠性、易操作性和可維修性。控制系統的性能進一步提高,已由過去控制標準的6軸機器人發展到現在能夠控制21軸甚至27軸,并且實現了軟件伺服和全數字控制。
人機界面更加友好,語言、圖形編程界面正在研制之中。機器人控制器的標準化和網絡化,以及基于PC機網絡式控制器已成為研究熱點。
編程技術除進一步提高在線編程的可操作性之外,離線編程的實用化將成為研究重點,在某些領域的離線編程已實現實用化。
3).機器人傳感技術:
機器人中的傳感器作用日益重要,除采用傳統的位置、速度、加速度等傳感器外,裝配、焊接機器人還應用了激光傳感器、視覺傳感器和力傳感器,并實現了焊縫自動跟蹤和自動化生產線上物體的自動定位以及精密裝配作業等,大大提高了機器人的作業性能和對環境的適應性。
遙控機器人則采用視覺、聲覺、力覺、觸覺等多傳感器的融合技術來進行環境建模及決策控制。為進一步提高機器人的智能和適應性,多種傳感器的使用是其問題解決的關鍵。其研究熱點在于有效可行的多傳感器融合算法,特別是在非線性及非平穩、非正態分布的情形下的多傳感器融合算法。另一問題就是傳感系統的實用化。
4).機器人性能價格比:
機器人性能不斷提高(高速度、高精度、高可靠性、便于操作和維修),而單機價格不斷下降。由于微電子技術的快速發展和大規模集成電路的應用,使機器人系統的可靠性有了很大提高。過去機器人系統的可靠性MTBF一般為幾千小時,而現在已達到5萬小時,可以滿足任何場合的需求。
近年來,人類的活動領域不斷擴大,機器人應用也從制造領域向非制造領域發展。像海洋開發、宇宙探測、采掘、建筑、醫療、農林業、服務、娛樂等行業都提出了自動化和機器人化的要求。這些行業與制造業相比,其主要特點是工作環境的非結構化和不確定性,因而對機器人的要求更高,需要機器人具有行走功能,對外感知能力以及局部的自主規劃能力等,是機器人技術的一個重要發展方向。
可以預見,在21世紀各種先進的機器人系統將會進入人類生活的各個領域,成為人類良好的助手和親密的伙伴。
4、 挑戰與對策
進入21世紀,世界經濟結構正在發生重大而深刻的變革,但制造業依然是世界各發達與發展中國家加快經濟發展、提高國家綜合競爭力的重要途徑。
我國是一個制造業大國,尚處于工業化進程之中,在未來相當長的時期里,制造業仍將在國民經濟中占主導地位。在新一輪國際產業結構調整中,我國正逐步成為世界最重要的制造業基地之一。
然而目前我國裝備制造業的整體水平與發達國家相比尚有較大的差距,尤其是在戰略必爭裝備技術與競爭前核心技術、基礎制造裝備與成套關鍵裝備制造技術等方面差距更大,這種差距又主要體現在先進裝備的自主設計與獨立制造能力差,成套與系統集成、優化能力差,技術創新和集成創新能力差。這些差距已經成為制約我國制造業乃至其他行業經濟發展的關鍵瓶頸問題之一。
21世紀基礎制造裝備的水平主要體現在高精度、高效率、低成本和高柔性等幾個方面。高效率、高精度工藝的一個典型例子是精密成形技術,其目的是盡量減少切削,甚至免除切削,減少原材料的浪費,同時提高制造效率。精密成形技術在工業發達國家已得到廣泛應用。柔性自動化仍是機床業發展的重要趨勢之一。柔性自動化的進一步發展是敏捷生產設備。為適應敏捷生產模式,人們正在探求設備自身的結構重組以及生產單元的動態重組問題。
另外,國外在大型、成套裝備方面有很大優勢,并且在成套裝備的高技術化方面,取得了巨大的進展,已經實現了數控化、柔性自動化,并大量采用工業機器人,正向著智能化、集成化的方向發展。
我國裝備制造業從來沒有像今天這樣直接地面對國際同行的有力競爭和挑戰。如何適應激烈的國際競爭和快速變化的世界市場需求,不斷以高質量、低成本、快速響應的手段在新的市場競爭中求得生存和發展,已是我國裝備制造業不容回避的問題。同時加入WTO也為我們提供了前所未有的機遇,我們必須抓住機遇迎頭趕上。
在“十五”期間,我國曾把包括焊接機器人在內的示教再現型工業機器人的產業化關鍵技術作為重點研究內容之一,其中包括焊接機器人(把弧焊與點焊機器人作為負載不同的一個系列機器人,可兼作弧焊、點焊、搬運、裝配、切割作業)產品的標準化、通用化、模塊化、系列化設計;弧焊機器人用激光視覺焊縫跟蹤裝置的開發,激光發射器的選用,CCD成象系統,視覺圖象處理技術,視覺跟蹤與機器人協調控制;焊接機器人的離線示教編程及工作站系統動態仿真等。
在新的歷史時期,面對新的機遇和挑戰,只有一方面緊跟世界科技發展的潮流,研究與開發具有自主知識產權的基礎制造裝備;另一方面,仍然通過引進和消化,吸收一些現有的先進技術,踩在別人的肩膀上,盡快縮短和別人的差距。并通過應用研究和二次開發,實現技術創新和關鍵設備的產業化,提高我國制造業在國際競爭舞臺上的地位。